PHYS 102 Midterm

Feb. 15, 2013

You have 50 minutes to complete this midterm. Attempt all questions. Write your name and student number on this page. Include 3 significant figures in all of your answers. Include units with all of your answers. Including this coversheet, which is unnumbered, there are a total of 7 pages.

The last page of the exam may be removed. This page contains a formula sheet which you may find helpful when solving some of the problems.

Name:

Student \#:

Name:
Student Number: \qquad
Midterm (24 points)
Multiple Choice: Circle the best answer for each of the three multiple choice questions.
(2 $\left.2^{\text {pts }}\right)$ 1. Two identical spheres (same radius and mass) are suspended from strings of equal length as shown in the figure. Initially, both spheres carry a charge of q and the electrostatic repulsion causes the string on the right to make an angle θ with respect to the vertical dashed line.

If the charge on sphere 1 is changed to $q / 2$ and the charge on sphere 2 is changed to $2 q$, what happens to θ ?
(a) θ increases.
(b) θ decreases.
(c) θ stays the same.
(d) More information is needed.
$\left(2^{\mathrm{pts}}\right)$
(a) $-2 Q / \varepsilon_{0}$
(b) $-Q / \varepsilon_{0}$
(c) zero
(d) Q / ε_{0}
(e) $2 Q / \varepsilon_{0}$
$\left(2^{\mathrm{pts}}\right)$ 3. The electric potential along the x-axis of a coordinate system is given by the plot below. What is the electric field along the x-direction at the position $x=15 \mathrm{~cm}$?

(a) $-2000 \frac{\mathrm{~V}}{\mathrm{~m}} \hat{\imath}$
(b) $-20 \frac{\mathrm{~V}}{\mathrm{~m}} \hat{\imath}$
(c) zero
(d) $+20 \frac{\mathrm{~V}}{\mathrm{~m}} \hat{\imath}$
(e) $+2000 \frac{\mathrm{~V}}{\mathrm{~m}} \hat{\imath}$

Free Response: Write out complete answers to the following questions. Show your work since it allows us to be generous with partial credit.
($\left.6^{\text {pts }}\right)$ 4. Three identical charges of mass m and charge q are held in place at the corners of an equilateral triangle. The charges are then simultaneously released from rest. With what speed v_{f} do the charges move once they are very far apart? Find an expression for v_{f} in terms of q, m, a, and Coulomb's constant K.

(6 $\left.6^{\text {pts }}\right)$
5. A section of a long cylinder of radius a is shown below. The cylinder has a uniform charge per unit volume ρ. Find an expression for the magnitude of the electric field E at point inside the cylinder that is a distance r from the cylinder axis.

(6 $\left.6^{\text {pts }}\right)$ 6. What is the charge on capacitor C_{3} ?

Potentially Useful Formulae.
Detach this sheet and keep it.

$$
\begin{aligned}
& g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& K=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \varepsilon_{0}=\frac{1}{4 \pi K}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2} \\
& \text { Electron: } \quad q_{\mathrm{e}}=-e=-1.60 \times 10^{-19} \mathrm{C} \\
& v=v_{\mathrm{i}}+a_{\mathrm{c}} \Delta t \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& x=x_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a_{\mathrm{c}}(\Delta t)^{2} \\
& v^{2}=v_{\mathrm{i}}^{2}+2 a_{\mathrm{c}} \Delta x \\
& \vec{A} \cdot \vec{B}=A B \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
& \vec{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\vec{F} / q \quad \vec{E}_{\text {net }}=\sum_{i} \vec{E}_{i} \\
& \Phi_{\mathrm{e}}=\int_{\text {surface }} \vec{E} \cdot d \vec{A} \\
& \oint \vec{E} \cdot d \vec{A}=\frac{Q_{\mathrm{in}}}{\varepsilon_{0}} \\
& U_{\text {elec }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r} \\
& V=U_{\text {elec }} / q \quad V_{\text {net }}=\sum_{i} V_{i} \\
& \Delta V=V_{\mathrm{f}}-V_{\mathrm{i}}=-\int_{\mathrm{i}}^{\mathrm{f}} \vec{E} \cdot d \vec{s} \\
& E_{s}=-\frac{d V}{d s} \\
& C=\frac{Q}{\Delta V_{\mathrm{C}}} \\
& \text { parallel plate cap.: } C_{0}=\varepsilon_{0} \frac{A}{d} \\
& \text { parallel: } C_{\mathrm{eq}}=\sum_{i} C_{i} \\
& \text { series: } \frac{1}{C_{\mathrm{eq}}}=\sum_{i} \frac{1}{C_{i}}
\end{aligned}
$$

